An Integral Sliding Mode Stator Current Control for Industrial Induction Motor

Author:

Shiravani FahimehORCID,Alkorta PatxiORCID,Cortajarena Jose AntonioORCID,Barambones OscarORCID

Abstract

An integral sliding mode control (ISMC) for stator currents of the induction motor (IM) is developed in this work. The proposed controller is developed in the d-q synchronous reference frame, by using the indirect field-oriented control (FOC) method. Robust asymptotic tracking of stator current components in the presence of model uncertainties and current coupling disturbance terms has been guaranteed by using an enhanced ISMC surface. More precisely, the stationary error of stator currents has been eliminated, and the accuracy of the regulators has been enhanced. According to the Lyapunov approach, it has been proven that the stator currents tracking happens asymptotically, and consequently, the stability of each loop has been demonstrated. Simulation and experimental results show the capability of the new controller in diminishing system chattering and increasing the robustness of the designed scheme, considering the variation of the plant parameters and current disturbance terms. It has been illustrated that compared with the conventional ISMC and PI regulators, the proposed current controllers provide smoother control actions and excellent dynamics. In addition, because of the precise control over the rotor flux, the rotor flux weakening method is employed to run the motor at a higher speed than the rated value.

Funder

University of the Basque Country

Publisher

MDPI AG

Subject

General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Magnetizing Curve Identification of Induction Motor for Drive Application Considering the Inverter Nonlinearity;2023 14th Power Electronics, Drive Systems, and Technologies Conference (PEDSTC);2023-01-31

2. Design of Sliding Mode Control using SVPWM Modulation Method for Speed Control of Induction Motor;Transportation Research Procedia;2023

3. An improved predictive current control for IM drives;Ain Shams Engineering Journal;2022-11

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3