Enhancing Model-Based Anticipatory Traffic Signal Control with Metamodeling and Adaptive Optimization

Author:

Huang Wei,Hu Yang,Zhang Xuanyu

Abstract

Traffic signal control is one effective way to alleviate traffic congestion. Anticipatory traffic signal control determines signal settings from a network planning perspective, which takes into account the influence of travelers’ route choice response and triggers better equilibrium flow patterns for better network performance. For the route choice response, it is usually predicted by a response function known as traffic assignment model. However, the response behavior can never be precisely modeled, leading to a mismatch between the modeled and real traffic flow patterns. This model-reality mismatch generally contributes to suboptimal control performance and hence brings unexpected congestion in real-life traffic operations. This study aims to address the model-reality mismatch and proposes an effective anticipatory traffic control for real operations. A metamodel is introduced that serves as a surrogate of the unknown structural model bias. Then an iterative optimizing control scheme is applied to correct the model bias by learning from observations. By integrating the model-based control design with data-driven learning techniques, the metamodeling framework is able to enhance the control performance. Moreover, the analytical model bias formulation allows theoretical investigation of the model approximation error. To further improve the control performance, a joint traffic model parameter estimation is developed, hence achieving a better model calibration jointly with the model bias correction. The proposed control method is examined on a test network. Numerical examples confirm the effectiveness of the proposed method in improving control performance despite the model-reality mismatch. Comparison results show that the proposed method outperforms the traditional model-based control method and an improvement of 14.8% in total travel time is achieved in the example network.

Publisher

MDPI AG

Subject

General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3