Clustering and Forecasting Urban Bus Passenger Demand with a Combination of Time Series Models

Author:

Mariñas-Collado IreneORCID,Sipols Ana E.ORCID,Santos-Martín M. TeresaORCID,Frutos-Bernal ElisaORCID

Abstract

The present paper focuses on the analysis of large data sets from public transport networks, more specifically, on how to predict urban bus passenger demand. A series of steps are proposed to ease the understanding of passenger demand. First, given the large number of stops in the bus network, these are divided into clusters and then different models are fitted for a representative of each of the clusters. The aim is to compare and combine the predictions associated with traditional methods, such as exponential smoothing or ARIMA, with machine learning methods, such as support vector machines or artificial neural networks. Moreover, support vector machine predictions are improved by incorporating explanatory variables with temporal structure and moving averages. Finally, through cointegration techniques, the results obtained for the representative of each group are extrapolated to the rest of the series within the same cluster. A case study in the city of Salamanca (Spain) is presented to illustrate the problem.

Funder

Agencia Estatal de Investigación

Junta de Castilla y León

Publisher

MDPI AG

Subject

General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)

Reference41 articles.

1. Big Data Clustering: A Review;Shirkhorshidi;Proceedings of the 14th International Conference on Computational Science and Its Applications—ICCSA 2014,2014

2. Time Series Clustering and Classification;Maharaj,2019

3. Review of guidelines for the use of combined forecasts

4. Analyzing year-to-year changes in public transport passenger behaviour using smart card data

5. Diurnal pattern of transit ridership: a case study of the New York City subway system

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3