Abstract
Jump and excessive motion are undesirable phenomena in relative rotation systems, causing a loss of global integrity and reliability of the systems. In this work, a typical relative rotation system is considered in which jump, excessive motion, and their suppression via delayed feedback are investigated. The Method of Multiple Scales and the Melnikov method are applied to analyze critical conditions for bi-stability and initial-sensitive excessive motion, respectively. By introducing the fractal of basins of attraction and the erosion of the safe basin to depict jump and initial-sensitive excessive motion, respectively, the point mapping approach is used to present numerical simulations which are in agreement with the theoretical prediction, showing the validity of the analysis. It is found that jump between bistable attractors can be due to saddle–node bifurcation, while initial-sensitive excessive motion can be due to heteroclinic bifurcation. Under a positive coefficient of the gain, the types of delayed feedback can both be effective in reducing jump and initial-sensitive excessive motion. The results may provide some reference for the performance improvement of rotors and main bearings.
Funder
National Natural Science Foundation of China
Subject
General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)