Abstract
A novel porous object for the control of the convective heat transfer of confined slot nanojet impingement is offered under magnetic field effects, while optimization-assisted computational fluid dynamics is used to find the best working conditions to achieve the best performance of the system. The flow, thermal patterns, and heat transfer characteristics were influenced by the variation in rotational Reynolds number (Rew), Hartmann number (Ha), permeability of the porous object (Da) and its location (Mx). There was a 14.5% difference in the average Nusselt number (Nu) at the highest Rew when motionless object configuration at Ha = 5 was compared, while it was less than 2% at Ha = 25. At Rew = −600, the average Nu variation was 22% when cases with the lowest and highest magnetic field strength were compared. The porous object provides an excellent tool for convective heat transfer control, while the best performance was achieved by using optimization-assisted computational fluid dynamics. The optimal sets of (Rew, Da, Mx, AR) for porous object were (−315.97, 0.0188, −1.456, 0.235), (−181.167, 0.0167, −1.441, 0.2), and (−483.13, 0.0210, −0.348, 0.2) at Ha = 5, 10, and 25, respectively. At the optimal operating point, the local Nu enhancements were 19.46%, 44.86%, and −0.54% at Ha = 5, 10, and 15, respectively, when the no-object case was compared, while the average values were 7.87%, 8.09% and 5.04%.
Funder
Scientific Research Deanship at University of Hail - Saudi Arabia
Subject
General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献