Exhaustive Exploitation of Local Seeding Algorithms for Community Detection in a Unified Manner

Author:

Hu YanmeiORCID,Yang BoORCID,Duo Bin,Zhu Xing

Abstract

Community detection is an essential task in network analysis and is challenging due to the rapid growth of network scales. Recently, discovering communities from the local perspective of some specified nodes called seeds, rather than requiring the global information of the entire network, has become an alternative approach to addressing this challenge. Some seeding algorithms have been proposed in the literature for finding seeds, but many of them require an excessive amount of effort because of the global information or intensive computation involved. In our study, we formally summarize a unified framework for local seeding by considering only the local information of each node. In particular, both popular local seeding algorithms and new ones are instantiated from this unified framework by adopting different centrality metrics. We categorize these local seeding algorithms into three classes and compare them experimentally on a number of networks. The experiments demonstrate that the degree-based algorithms usually select the fewest seeds, while the denseness-based algorithms, except the one with node mass as the centrality metric, select the most seeds; using the conductance of the egonet as the centrality metric performs best in discovering communities with good quality; the core-based algorithms perform best overall considering all the evaluation metrics; and among the core-based algorithms, the one with the Jaccard index works best. The experimental results also reveal that all the seeding algorithms perform poorly in large networks, which indicates that discovering communities in large networks is still an open problem that urgently needs to be addressed.

Funder

National Natural Science Foundation of China

the Key Research and Development Program of Sichuan Province of China

Publisher

MDPI AG

Subject

General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3