A Multi-Depot Dynamic Vehicle Routing Problem with Stochastic Road Capacity: An MDP Model and Dynamic Policy for Post-Decision State Rollout Algorithm in Reinforcement Learning

Author:

Anuar Wadi KhalidORCID,Lee Lai SoonORCID,Seow Hsin-VonnORCID,Pickl Stefan

Abstract

In the event of a disaster, the road network is often compromised in terms of its capacity and usability conditions. This is a challenge for humanitarian operations in the context of delivering critical medical supplies. To optimise vehicle routing for such a problem, a Multi-Depot Dynamic Vehicle-Routing Problem with Stochastic Road Capacity (MDDVRPSRC) is formulated as a Markov Decision Processes (MDP) model. An Approximate Dynamic Programming (ADP) solution method is adopted where the Post-Decision State Rollout Algorithm (PDS-RA) is applied as the lookahead approach. To perform the rollout effectively for the problem, the PDS-RA is executed for all vehicles assigned for the problem. Then, at the end, a decision is made by the agent. Five types of constructive base heuristics are proposed for the PDS-RA. First, the Teach Base Insertion Heuristic (TBIH-1) is proposed to study the partial random construction approach for the non-obvious decision. The heuristic is extended by proposing TBIH-2 and TBIH-3 to show how Sequential Insertion Heuristic (SIH) (I1) as well as Clarke and Wright (CW) could be executed, respectively, in a dynamic setting as a modification to the TBIH-1. Additionally, another two heuristics: TBIH-4 and TBIH-5 (TBIH-1 with the addition of Dynamic Lookahead SIH (DLASIH) and Dynamic Lookahead CW (DLACW) respectively) are proposed to improve the on-the-go constructed decision rule (dynamic policy on the go) in the lookahead simulations. The results obtained are compared with the matheuristic approach from previous work based on PDS-RA.

Publisher

MDPI AG

Subject

General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3