DCA for Sparse Quadratic Kernel-Free Least Squares Semi-Supervised Support Vector Machine

Author:

Sun JunORCID,Qu Wentao

Abstract

With the development of science and technology, more and more data have been produced. For many of these datasets, only some of the data have labels. In order to make full use of the information in these data, it is necessary to classify them. In this paper, we propose a strong sparse quadratic kernel-free least squares semi-supervised support vector machine (SSQLSS3VM), in which we add a ℓ0norm regularization term to make it sparse. An NP-hard problem arises since the proposed model contains the ℓ0 norm and another nonconvex term. One important method for solving the nonconvex problem is the DC (difference of convex function) programming. Therefore, we first approximate the ℓ0 norm by a polyhedral DC function. Moreover, due to the existence of the nonsmooth terms, we use the sGS-ADMM to solve the subproblem. Finally, empirical numerical experiments show the efficiency of the proposed algorithm.

Publisher

MDPI AG

Subject

General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3