A Topological Characterization to Arbitrary Resilient Asynchronous Complexity

Author:

Yue Yunguang,Liu Xingwu,Lei Fengchun,Wu Jie

Abstract

In this work, we extend the topology-based framework and method for the quantification and classification of general resilient asynchronous complexity. We present the arbitrary resilient asynchronous complexity theorem, applied to decision tasks in an iterated delayed model which is based on a series of communicating objects, each of which mainly consists of the delayed algorithm. In order to do this, we first introduce two topological structures, delayed complex and reduced delayed complex, and build the topological computability model, and then investigate some properties of those structures and the computing power of that model. Our theorem states that the time complexity of any arbitrary resilient asynchronous algorithm is proportional to the level of a reduced delayed complex necessary to allow a simplicial map from a task’s input complex to its output complex. As an application, we use it to derive the bounds on time complexity to approximate agreement with n+1 processes.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)

Reference42 articles.

1. Impossibility of distributed consensus with one faulty process;Fischer;Proceedings of the Second ACM SIGACT-SIGMOD Symposium on Principles of Database Systems,1983

2. Distributed Algorithms;Lynch,1996

3. Wait-free synchronization

4. Broadcast communication operations for hyper hexa-cell interconnection network

5. The asynchronous computability theorem for t-resilient tasks;Herlihy;Proceedings of the Twenty-Fifth Annual ACM Symposium on Theory of Computing,1993

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3