Representing Functions in H2 on the Kepler Manifold via WPOAFD Based on the Rational Approximation of Holomorphic Functions

Author:

Song ZeyuanORCID,Sun Zuoren

Abstract

The central problem of this study is to represent any holomorphic and square integrable function on the Kepler manifold in the series form based on Fourier analysis. Because these function spaces are reproducing kernel Hilbert spaces (RKHS), three different domains on the Kepler manifold are considered and the weak pre-orthogonal adaptive Fourier decomposition (POAFD) is proposed on the domains. First, the weak maximal selection principle is shown to select the coefficient of the series. Furthermore, we prove the convergence theorem to show the accuracy of our method. This study is the extension of work by Wu et al. on POAFD in Bergman space.

Funder

National Natural Science Foundation of China

Humanities and Social Science Project of Shandong Province

Publisher

MDPI AG

Subject

General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)

Reference26 articles.

1. Algebraic Varieties;Kempf,1993

2. The Jacobian Variety of an Algebraic Curve

3. Moduli Theory and Classification Theory of Algebraic Varieties;Popp,2006

4. Reproducing kernel functions and asymptotic expansions on Jordan-Kepler manifolds

5. Toeplitz operators and Toeplitz C-algebras in several complex variables;Upmeier,2019

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3