Dimensionless Characterization to Estimate Horizontal Groundwater Velocity from Temperature–Depth Profiles in Aquifers

Author:

Jiménez-Valera José AntonioORCID,Alhama Francisco

Abstract

The outcome of a dimensionless characterization study in a two-dimensional porous media domain in which groundwater flows at a constant horizontal velocity is presented in this report. Using spatial discrimination, the dimensionless groups that govern the solution patterns are determined from dimensionless governing equations. As a boundary condition on the surface, the case of constant temperature is studied. From the mathematical deduction of the groups, a characteristic horizontal length emerges. This length determines the region in which temperature–depth profiles are affected by flow. Existing analytical solutions have been shown to be invalid due to the severe assumption that the horizontal thermal gradient has a constant value. Therefore, universal solutions based on pi theorem have been obtained for the characteristic horizontal length, temperature field, temperature–depth profiles and horizontal temperature profiles. Dependencies between dimensionless groups have been depicted by universal curves, abacuses and surfaces. These graphical solutions are used in an easy way to estimate groundwater velocity from experimental temperature measurements in the form of an inverse problem. In addition, an easy and fast protocol for estimating fluid flow velocity and groundwater inlet temperature from temperature profile measurements is proposed. This protocol is applied in a scenario of groundwater discharge from a quaternary aquifer to a salty lagoon located in the southeast of Spain.

Funder

Fundación Seneca

Publisher

MDPI AG

Subject

General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)

Reference32 articles.

1. Use of Temperature Profiles Beneath Streams to Determine Rates of Vertical Ground-Water Flow and Vertical Hydraulic Conductivity,1989

2. Ratio of Momentum Diffusivity to Thermal Diffusivity: Introduction, Meta-Analysis, and Scrutinization;Animasaun,2022

3. Modeling Fluid Flow in Fractured Porous Media with the Interfacial Conditions Between Porous Medium and Fracture

4. The Effects of Perforation Erosion on Practical Hydraulic-Fracturing Applications

5. Analysis of Flow in Fractal Porous Media

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3