Hydroxyapatite-Based Coatings on Silicon Wafers and Printed Zirconia

Author:

Chauvin Antoine1,Garda Marie-Rose1,Snyder Nathan2,Cui Bai2,Delpouve Nicolas1,Tan Li2

Affiliation:

1. Groupe de Physique des Matériaux UMR 6634, CNRS, Université de Rouen Normandie, INSA Rouen Normandie, F-76000 Rouen, France

2. Department of Mechanical and Materials Engineering, University of Nebraska, Lincoln, NE 68588, USA

Abstract

Dental surgery needs a biocompatible implant design that can ensure both osseointegration and soft tissue integration. This study aims to investigate the behavior of a hydroxyapatite-based coating, specifically designed to be deposited onto a zirconia substrate that was intentionally made porous through additive manufacturing for the purpose of reducing the cost of material. Layers were made via sol–gel dip coating by immersing the porous substrates into solutions of hydroxyapatite that were mixed with polyethyleneimine to improve the adhesion of hydroxyapatite to the substrate. The microstructure was determined by using X-ray diffraction, which showed the adhesion of hydroxyapatite; and atomic force microscopy was used to highlight the homogeneity of the coating repartition. Thermogravimetric analysis, differential scanning calorimetry, and Fourier transform infrared spectroscopy showed successful, selective removal of the polymer and a preserved hydroxyapatite coating. Finally, scanning electron microscopy pictures of the printed zirconia ceramics, which were obtained through the digital light processing additive manufacturing method, revealed that the mixed coating leads to a thicker, more uniform layer in comparison with a pure hydroxyapatite coating. Therefore, homogeneous coatings can be added to porous zirconia by combining polyethyleneimine with hydroxyapatite. This result has implications for improving global access to dental care.

Funder

University of Nebraska-Lincoln

Publisher

MDPI AG

Subject

Biomedical Engineering,Biomaterials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3