Photodynamic Inactivation of Legionella pneumophila Biofilm Formation by Cationic Tetra- and Tripyridylporphyrins in Waters of Different Hardness

Author:

Mušković Martina,Ćavar Iva,Lesar AndrijaORCID,Lončarić MartinORCID,Malatesti NelaORCID,Gobin IvanaORCID

Abstract

The bacterium Legionella pneumophila is still one of the probable causes of waterborne diseases, causing serious respiratory illnesses. In the aquatic systems, L. pneumophila exists inside free-living amoebae or can form biofilms. Currently developed disinfection methods are not sufficient for complete eradication of L. pneumophila biofilms in water systems of interest. Photodynamic inactivation (PDI) is a method that results in an antimicrobial effect by using a combination of light and a photosensitizer (PS). In this work, the effect of PDI in waters of natural origin and of different hardness, as a treatment against L. pneumophila biofilm, was investigated. Three cationic tripyridylporphyrins, which were previously described as efficient agents against L. pneumophila alone, were used as PSs. We studied how differences in water hardness affect the PSs’ stability, the production of singlet oxygen, and the PDI activity on L. pneumophila adhesion and biofilm formation and in biofilm destruction. Amphiphilic porphyrin showed a stronger tendency for aggregation in hard and soft water, but its production of singlet oxygen was higher in comparison to tri- and tetracationic hydrophilic porphyrins that were stable in all water samples. All three studied porphyrins were shown to be effective as PDI agents against the adhesion of the L. pneumophila to polystyrene, against biofilm formation, and in the destruction of the formed biofilm, in their micromolar concentrations. However, a higher number of dissolved ions, i.e., water hardness, generally reduced somewhat the PDI activity of all the porphyrins at all tested biofilm growth stages.

Funder

European Regional Development Fund

University of Rijeka

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3