Activation of Neuronal Nicotinic Receptors Inhibits Acetylcholine Release in the Neuromuscular Junction by Increasing Ca2+ Flux through Cav1 Channels

Author:

Zhilyakov NikitaORCID,Arkhipov Arsenii,Malomouzh Artem,Samigullin DmitryORCID

Abstract

Cholinergic neurotransmission is a key signal pathway in the peripheral nervous system and in several branches of the central nervous system. Despite the fact that it has been studied extensively for a long period of time, some aspects of its regulation still have not yet been established. One is the relationship between the nicotine-induced autoregulation of acetylcholine (ACh) release with changes in the concentration of presynaptic calcium levels. The mouse neuromuscular junction of m. Levator Auris Longus was chosen as the model of the cholinergic synapse. ACh release was assessed by electrophysiological methods. Changes in calcium transients were recorded using a calcium-sensitive dye. Nicotine hydrogen tartrate salt application (10 μM) decreased the amount of evoked ACh release, while the calcium transient increased in the motor nerve terminal. Both of these effects of nicotine were abolished by the neuronal ACh receptor antagonist dihydro-beta-erythroidine and Cav1 blockers, verapamil, and nitrendipine. These data allow us to suggest that neuronal nicotinic ACh receptor activation decreases the number of ACh quanta released by boosting calcium influx through Cav1 channels.

Funder

Russian Foundation for Basic Research

Government assignment for FRC Kazan Scientific Center of RAS

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3