Abstract
Autosomal recessive spastic ataxia of Charlevoix-Saguenay (ARSACS) is a multisystem hereditary ataxia associated with mutations in SACS, which encodes sacsin, a protein of still only partially understood function. Although mouse models of ARSACS mimic largely the disease progression seen in humans, their use in the validation of effective therapies has not yet been proposed. Recently, the teleost Danio rerio has attracted increasing attention as a vertebrate model that allows rapid and economical screening, of candidate molecules, and thus combines the advantages of whole-organism phenotypic assays and in vitro high-throughput screening assays. Through CRISPR/Cas9-based mutagenesis, we generated and characterized a zebrafish sacs-null mutant line that replicates the main features of ARSACS. The sacs-null fish showed motor impairment, hindbrain atrophy, mitochondrial dysfunction, and reactive oxygen species accumulation. As proof of principle for using these mutant fish in high-throughput screening studies, we showed that both acetyl-DL-leucine and tauroursodeoxycholic acid improved locomotor and biochemical phenotypes in sacs−/− larvae treated with these neuroprotective agents, by mediating significant rescue of the molecular functions altered by sacsin loss. Taken together, the evidence here reported shows the zebrafish to be a valuable model organism for the identification of novel molecular mechanisms and for efficient and rapid in vivo optimization and screening of potential therapeutic compounds. These findings may pave the way for new interventions targeting the earliest phases of Purkinje cell degeneration in ARSACS.
Subject
Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis
Cited by
12 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献