Abstract
Immune checkpoint inhibitors (ICIs) have a huge impact on clinical treatment results in non-small cell lung cancer (NSCLC). Blocking antibodies targeting programmed cell death protein 1 (PD-1), programmed cell death protein ligand 1 (PD-L1) or CTLA-4 (cytotoxic T cell antigen 4) have been developed and approved for the treatment of NSCLC patients. However, a large number of patients develop resistance to this type of treatment. Primary and secondary immunotherapy resistance are distinguished. No solid biomarkers are available that are appropriate to predict the unique sensitivity to immunotherapy. Knowledge of predictive markers involved in treatment resistance is fundamental for planning of new treatment combinations. Scientists focused research on the use of immunotherapy as an essential treatment in combination with other therapy strategies, which could increase cancer immunogenicity by generating tumor cells death and new antigen release as well as by targeting other immune checkpoints and tumor microenvironment. In the present review, we summarize the current knowledge of molecular bases underlying immunotherapy resistance and discuss the capabilities and the reason of different therapeutic combinations.
Subject
Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis
Cited by
32 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献