SecProCT: In Silico Prediction of Human Secretory Proteins Based on Capsule Network and Transformer

Author:

Du Wei,Zhao Xuan,Sun Yu,Zheng Lei,Li YingORCID,Zhang Yu

Abstract

Identifying secretory proteins from blood, saliva or other body fluids has become an effective method of diagnosing diseases. Existing secretory protein prediction methods are mainly based on conventional machine learning algorithms and are highly dependent on the feature set from the protein. In this article, we propose a deep learning model based on the capsule network and transformer architecture, SecProCT, to predict secretory proteins using only amino acid sequences. The proposed model was validated using cross-validation and achieved 0.921 and 0.892 accuracy for predicting blood-secretory proteins and saliva-secretory proteins, respectively. Meanwhile, the proposed model was validated on an independent test set and achieved 0.917 and 0.905 accuracy for predicting blood-secretory proteins and saliva-secretory proteins, respectively, which are better than conventional machine learning methods and other deep learning methods for biological sequence analysis. The main contributions of this article are as follows: (1) a deep learning model based on a capsule network and transformer architecture is proposed for predicting secretory proteins. The results of this model are better than the those of existing conventional machine learning methods and deep learning methods for biological sequence analysis; (2) only amino acid sequences are used in the proposed model, which overcomes the high dependence of existing methods on the annotated protein features; (3) the proposed model can accurately predict most experimentally verified secretory proteins and cancer protein biomarkers in blood and saliva.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Jilin Province

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3