Physiological and Molecular Analysis Reveals the Differences of Photosynthesis between Colored and Green Leaf Poplars

Author:

Wang TaoORCID,Li Lingyu,Cheng Guanghao,Shu Xiaochun,Wang Ning,Zhang Fengjiao,Zhuang Weibing,Wang Zhong

Abstract

Leaf coloration changes evoke different photosynthetic responses among different poplar cultivars. The aim of this study is to investigate the photosynthetic difference between a red leaf cultivar (ZHP) and a green leaf (L2025) cultivar of Populus deltoides. In this study, ‘ZHP’ exhibited wide ranges and huge potential for absorption and utilization of light energy and CO2 concentration which were similar to those in ‘L2025’ and even showed a stronger absorption for weak light. However, with the increasing light intensity and CO2 concentration, the photosynthetic capacity in both ‘L2025’ and ‘ZHP’ was gradually restricted, and the net photosynthetic rate (Pn) in ‘ZHP’ was significantly lower than that in ‘L2025’under high light or high CO2 conditions, which was mainly attributed to stomatal regulation and different photosynthetic efficiency (including the light energy utilization efficiency and photosynthetic CO2 assimilation efficiency) in these two poplars. Moreover, the higher anthocyanin content in ‘ZHP’ than that in ‘L2025’ was considered to be closely related to the decreased photosynthetic efficiency in ‘ZHP’. According to the results from the JIP-test, the capture efficiency of the reaction center for light energy in ‘L2025’ was significantly higher than that in ‘ZHP’. Interestingly, the higher levels of light quantum caused relatively higher accumulation of QA- in ‘L2025’, which blocked the electron transport and weakened the photosystem II (PSII) performance as compared with ‘ZHP’; however, the decreased capture of light quantum also could not promote the utilization of light energy, which was the key to the low photosynthetic efficiency in ‘ZHP’. The differential expressions of a series of photosynthesis-related genes further promoted these specific photosynthetic processes between ‘L2025’ and ‘ZHP’.

Funder

Jiangsu Agricultural Science and Technology Innovation Fund

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3