The Arabidopsis HY2 Gene Acts as a Positive Regulator of NaCl Signaling during Seed Germination

Author:

Piao Mingxin,Zou JinpengORCID,Li Zhifang,Zhang Junchuan,Yang Liang,Yao Nan,Li Yuhong,Li Yaxing,Tang Haohao,Zhang Li,Yang Deguang,Yang Zhenming,Du Xinglin,Zuo Zecheng

Abstract

Phytochromobilin (PΦB) participates in the regulation of plant growth and development as an important synthetase of photoreceptor phytochromes (phy). In addition, Arabidopsis long hypocotyl 2 (HY2) appropriately works as a key PΦB synthetase. However, whether HY2 takes part in the plant stress response signal network remains unknown. Here, we described the function of HY2 in NaCl signaling. The hy2 mutant was NaCl-insensitive, whereas HY2-overexpressing lines showed NaCl-hypersensitive phenotypes during seed germination. The exogenous NaCl induced the transcription and the protein level of HY2, which positively mediated the expression of downstream stress-related genes of RD29A, RD29B, and DREB2A. Further quantitative proteomics showed the patterns of 7391 proteins under salt stress. HY2 was then found to specifically mediate 215 differentially regulated proteins (DRPs), which, according to GO enrichment analysis, were mainly involved in ion homeostasis, flavonoid biosynthetic and metabolic pathways, hormone response (SA, JA, ABA, ethylene), the reactive oxygen species (ROS) metabolic pathway, photosynthesis, and detoxification pathways to respond to salt stress. More importantly, ANNAT1–ANNAT2–ANNAT3–ANNAT4 and GSTU19–GSTF10–RPL5A–RPL5B–AT2G32060, two protein interaction networks specifically regulated by HY2, jointly participated in the salt stress response. These results direct the pathway of HY2 participating in salt stress, and provide new insights for the plant to resist salt stress.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3