Effect of New Eco-Polyols Based on PLA Waste on the Basic Properties of Rigid Polyurethane and Polyurethane/Polyisocyanurate Foams

Author:

Borowicz MarcinORCID,Isbrandt MarekORCID,Paciorek-Sadowska JoannaORCID

Abstract

The aim of the presented research was to obtain two new eco-polyols based on waste polylactide (PLA) and to check the effect on the properties of rigid polyurethane (RPU) foams and, based on these, rigid polyurethane/polyisocyanurate (RPU/PIR) foams. The synthesis of eco-polyols was based on the transesterification reaction of melted PLA with diethylene glycol in the presence of an organometallic catalyst. Properties of the obtained eco-polyols were examined for their potential as raw materials for synthesis of rigid polyurethane and polyisocyanurate foams, i.e., hydroxyl value, acid value, density, viscosity, pH, water content. Spectroscopic studies (FTIR, 1H NMR and 13C NMR) were also carried out. Results of these tests confirmed the assumed chemical structure of the new polyols. RPU and RPU/PIR foam formulations were developed based on the obtained analytical results. Partial replacement of petrochemical polyol by eco-polyols in RPU and RPU/PIR foams decreased the value of apparent density, compressive strength, brittleness and water absorption. Moreover, all foams modified by eco-polyols showed higher resistance to aging. All RPU/PIR foams and most PRU foams modified by eco-polyols from waste PLA had better functional properties than the reference foams based on petrochemical polyol.

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

Reference86 articles.

1. Acknowledgements

2. Plastic—The Facts 2020https://www.plasticseurope.org/application/files/5716/0752/4286/AF_Plastics_the_facts-WEB-2020-ING_FINAL.pdf

3. The global PU industry 2013/2014 review and forecast;Austin;PU Mag. Int.,2014

4. Chemistry and Technology of Polyols for Polyurethanes;Ionescu,2015

5. Polyurethane types, synthesis and applications – a review

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3