Temperature-Dependent Mechanical Behaviors and Deformation Mechanisms in a Si-Added Medium-Entropy Superalloy with L12 Precipitation

Author:

Zhang Tuanwei12,Bai Tianxiang12,Xiong Renlong3,Luo Shunhui12,Chang Hui12,Du Shiyu12,Ma Jinyao14,Jiao Zhiming12,Ma Shengguo12,Wang Jianjun12,Wang Zhihua12

Affiliation:

1. Institute of Applied Mechanics, College of Mechanical and Vehicle Engineering, Taiyuan University of Technology, Taiyuan 030024, China

2. Shanxi Key Laboratory of Material Strength and Structural Impact, Taiyuan University of Technology, Taiyuan 030024, China

3. Hubei Provincial Key Laboratory of Chemical Equipment Intensification and Intrinsic Safety, School of Mechanical and Electrical Engineering, Wuhan Institute of Technology, Wuhan 430205, China

4. Instrumental Analysis Center, Taiyuan University of Technology, Taiyuan 030024, China

Abstract

A novel Ni-Co-Cr-based medium-entropy superalloy with a high Si content (7.5 at%) strengthened by an L12 phase was developed. The pure L12 phase, characterized by an average size of 50 nm and a volume fraction of 46%, was precipitated within the FCC matrix. This alloy exhibits excellent mechanical properties over a wide range of temperatures from 77 K to 1073 K. A yield strength of 1005 MPa, an ultimate tensile strength of 1620 MPa, and a tensile elongation of 36% were achieved at 77 K, with a maximum value of 4.8 GPa at the second stage of the work-hardening rate. The alloy maintains a basically consistent yield strength of approximately 800 MPa from 298 K to 973 K, showcasing significant strain-hardening capabilities, with values of 2.5 GPa, 3.7 GPa, and 4.8 GPa at 873 K, 298 K, and 77 K, respectively. Microscopic analysis revealed that at room and cryogenic temperatures, multilayer stacking faults (SFs), SF bands, and SF networks, rather than twins, effectively stored a large number of dislocations and impeded dislocation movement, thereby enhancing the work-hardening ability of the alloy. Furthermore, at 773 K, the primary deformation mechanism involved high-density dislocation walls (HDDWs) consisting of dislocation tangles and SF lines. As the temperature rose to 973 K, the work-hardening process was influenced by the APB shearing mechanism (in the form of dislocation pairs), SF lines, and microtwins generated through atomic rearrangement. This study not only provides valuable insights for the development of new oxidation-resistant superalloys but also enhances our understanding of high-temperature deformation mechanisms.

Funder

National Natural Science Foundation of China

Science and Technology Innovation Teams of Shanxi Province

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3