Research on Blast Furnace Ingredient Optimization Based on Improved Grey Wolf Optimization Algorithm

Author:

Liu Ran12ORCID,Gao Zi-Yang1ORCID,Li Hong-Yang1ORCID,Liu Xiao-Jie1,Lv Qing1

Affiliation:

1. College of Metallurgy & Energy, North China University of Science and Technology, Tangshan 063021, China

2. College of Iron & Steel Carbon Neutrality, North China University of Science and Technology, Tangshan 063021, China

Abstract

Blast furnace ironmaking plays an important role in modern industry and the development of the economy. A reasonable ingredient scheme is crucial for energy efficiency and emission reduction in blast furnace production. Determining the right blast furnace ingredients is a complicated process; therefore, this study examines the optimization of the ingredient ratio. In this paper a model of the blast furnace ingredients is established by considering cost of per ton iron, CO2 emissions, and the theoretical coke ratio as the objective functions; ingredient parameters, process parameters, main and by-product parameters as variables; and the blast furnace smelting theory and equilibrium equation as constraints. Then, the model is solved by using an improved grey wolf optimization algorithm and an improved multi-objective grey wolf optimization algorithm. Using the data collected from the steel mill, the conclusion is that multi-objective optimization can consider the indexes of each target, so that the values of all the targets are excellent; we also compared the multi-objective solution results with the original production scheme of the steel mill, and we found that using the blast furnace ingredient scheme optimized in this study can reduce the cost of iron per ton, CO2 emissions per ton, and the theoretical coke ratio in blast furnace production by 350 CNY/t, 1000 kg/t, and 20 kg/t, respectively, compared with the original production plan. Thus, steel mill decision makers can choose the blast furnace ingredients according to different business strategies and the actual needs of steel mills can be better met.

Funder

National Natural Science Foundation of China

Hebei Natural Science Foundation

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3