Advancements in Hybrid Additive Manufacturing: Integrating SLM and LMD for High-Performance Applications

Author:

Chalicheemalapalli Jayasankar Deviprasad1,Gnaase Stefan1,Kaiser Maximilian Alexander1,Lehnert Dennis1,Tröster Thomas1

Affiliation:

1. Mechanical Department, University of Paderborn, Warburger Strasse 100, 33098 Paderborn, Germany

Abstract

Additive manufacturing (AM) technologies enable near-net-shape designs and demand-oriented material usage, which significantly minimizes waste. This points to a substantial opportunity for further optimization in material savings and process design. The current study delves into the advancement of sustainable manufacturing practices in the automotive industry, emphasizing the crucial role of lightweight construction concepts and AM technologies in enhancing resource efficiency and reducing greenhouse gas emissions. By exploring the integration of novel AM techniques such as selective laser melting (SLM) and laser metal deposition (LMD), the study aims to overcome existing limitations like slow build-up rates and limited component resolution. The study’s core objective revolves around the development and validation of a continuous process chain that synergizes different AM routes. In the current study, the continuous process chain for DMG MORI Lasertec 65 3D’s LMD system and the DMG MORI Lasertec 30 3D’s was demonstrated using 316L and 1.2709 steel materials. This integrated approach is designed to significantly curtail process times and minimize component costs, thus suggesting an industry-oriented process chain for future manufacturing paradigms. Additionally, the research investigates the production and material behavior of components under varying manufacturing processes, material combinations, and boundary layer materials. The culmination of this study is the validation of the proposed process route through a technology demonstrator, assessing its scalability and setting a benchmark for resource-efficient manufacturing in the automotive sector.

Funder

State of North Rhine–Westphalia

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3