Study of Phase Transformations and Interface Evolution in Carbon Steel under Temperatures and Loads Using Molecular Dynamics Simulation

Author:

Wen Chao123,Li Zhengminqing4,Wu Hongyan5ORCID,Gu Jianfeng12

Affiliation:

1. Institute of Materials Modification and Modelling, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China

2. Shanghai Key Laboratory of Materials Laser Processing and Modification, Shanghai Jiao Tong University, Shanghai 200240, China

3. CRRC Qishuyan Institute Co., Ltd., Changzhou 213011, China

4. College of Mechanical and Electrical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China

5. School of Chemistry and Materials Science, Nanjing University of Information Science and Technology, Nanjing 210044, China

Abstract

Carbon steel materials are widely used in mechanical transmission. Under different temperature and pressure service conditions, the microscopic changes of stress and strain that are difficult to detect and analyze by experimental means will lead to failure deformation, thus affecting their operational stability and life. In this study, the molecular dynamics method is used to simulate the heating–cooling phase transition process of common carbon steel materials. Austenite transformation temperatures of 980 K (0.2 wt.%) and 1095 K (0.5 wt.%) are acquired which is determined by the volume hysteresis before and after transformation, which is consistent with the results of JMatPro phase diagram analysis. The internal stress state of the material varies between compressive stress and tensile stress due to the change of phase structure, and the dislocation characteristics during the phase transition period are observed to change significantly. Then, an α/γ two-phase interface model is constructed to study the migration of the phase interface and the change of the phase structure by applying a continuously changing external load. At the same time, the transition pressure of α→ϵ is obtained with a value of 37 GPa under three different initial loads showing the independence of the initial load and the historical path. Based on the molecular dynamics simulation and the phase diagram calculation of the carbon steel, the analysis method for the microstructure transformation and the stress–strain behavior of the phase interface under the external load can provide a reference for the design of microstructure and mechanical properties of alloy steel in the future.

Funder

National Natural Science Foundation of China

AECC

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3