Precipitation Behavior and Strengthening–Toughening Mechanism of Nb Micro-Alloyed Direct-Quenched and Tempered 1000 MPa Grade High-Strength Hydropower Steel

Author:

Pan Zhongde12,Wang Enmao1,Wu Huibin1

Affiliation:

1. Collaborative Innovation Center of Steel Technology, University of Science and Technology Beijing, Beijing 100083, China

2. Nanjing Iron and Steel Co., Ltd., Nanjing 210035, China

Abstract

Faced with the rapid development of large-scale pumped-storage power stations, the trade-off between the strength and toughness of hydropower steels in extreme environments has been limiting their application. The effects of Nb micro-alloying and direct quenching and tempering processes on the strengthening–toughening mechanism of 1000 MPa grade high-strength hydropower steel are studied in this paper, and the precipitation behavior of Nb is discussed. The results showed that only the 0.025Nb steel using the DQT process achieved a cryogenic impact energy of more than 100 J at −60 °C. Under the DQT process, a large number of deformation bands and dislocations were retained, refining the prior austenite grains and providing more nucleation sites for the precipitation of NbC during the cooling process. The DQT process has a more obvious local strain concentration, mainly focusing on the refined lath boundary, which indicates that the refinement of the microstructure also promotes the stacking of dislocations. The improvement in fine grain strengthening and dislocation strengthening by the DQT process jointly led to an increase in strength, resulting in a better combination of strength and toughness.

Funder

the Key R&D Projects in Shandong Province

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3