Vision-Assisted Probabilistic Inference of Milling Stability through Fully Bayesian Gaussian Process

Author:

Ostad Ali Akbari Vahid1ORCID,Eichenberger Andrea12ORCID,Wegener Konrad1

Affiliation:

1. Institute of Machine Tools and Manufacturing (IWF), ETH Zurich, 8005 Zurich, Switzerland

2. Inspire AG, Technoparkstrasse 1, 8005 Zurich, Switzerland

Abstract

This paper presents a physics-free Bayesian approach for the learning and inference of probabilistic stability charts in milling operations. The approach does not require any information from machine tool structural dynamics or cutting force coefficients, and the underlying learning algorithm can operate with limited training data. A Fully Bayesian Gaussian Process with distributions on its kernel hyperparameters is employed to enable information transfer between different machine and process configurations. The vision system further automates the detection of necessary dimensions from the tool–holder assembly in the machine’s tool magazine, further enhancing the applicability of the approach. Experiments demonstrated the effectiveness of this approach, offering great promise as an industry-friendly solution.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3