The Influence of Insertion Depth of Inorganic Materials on Solidification Microstructure and Segregation of 2.5-ton 42CrMo Ingot

Author:

Sun Shujian1,Du Yonglong1,Zhang Zhenqiang1,Jiang Danqing1,Xu Songzhe1,Ren Zhongming1

Affiliation:

1. State Key Laboratory of Advanced Special Steel, School of Materials Science and Engineering, Shanghai University, Shanghai 200444, China

Abstract

In this work, a novel internal heat absorption technology using inorganic material rods is employed during the solidification process of steel ingots, aiming to control their solidification and improve the quality of the final product. The study investigates the effect of the insertion depth of inorganic materials on the solidification microstructure and macrosegregation of 2.5-ton 42CrMo ingots. The mechanical properties of samples from the product are also tested. A numerical simulation model for casting 2.5-ton ingots is established and implemented in Ansys Fluent fluid simulation software, with inorganic material rods set at different preset depths. The simulation explores the physical processes of the melting and floating of inorganic materials in molten steel, as well as their effects on the temperature and flow fields of the material. The results show that deeper insertion of inorganic materials (200 mm from the hot top) reduces the tendency for macrosegregation compared to that at the insertion depth of 100 mm. Specifically, the positive segregation area decreases by 10.35%, while the negative segregation area decreases by 15.32%. Moreover, deeper insertion results in a significant refinement of the solidification microstructure, ultimately enhancing the mechanical properties of the products machined from the ingots (i.e., the yield strength increased by 4.7%). The numerical simulation results indicate that as the placement depth of inorganic materials in the ingot mold increases, the cooling effect becomes more significant, the flow area of molten steel initiated by the inorganic materials expands, and the linear velocity of the double-circle flow increases. This further explains why the solidification quality of the ingots improves with the increasing placement depth of inorganic materials.

Funder

The Shanghai Municipal Commission of Economy and Informatization

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3