A Hybrid Approach for Energy Consumption and Improvement in Sensor Network Lifespan in Wireless Sensor Networks

Author:

Ullah Arif1ORCID,Khan Fawad Salam2ORCID,Mohy-ud-din Zia3,Hassany Noman4,Gul Jahan Zeb3ORCID,Khan Maryam5ORCID,Kim Woo Young5ORCID,Park Youn Cheol6,Rehman Muhammad Muqeet5ORCID

Affiliation:

1. Department of Computer Science, Faculty of Computing and Artificial Intelligent, Air University, Islamabad 44000, Pakistan

2. Department of Creative Technologies, Faculty of Computing and Artificial Intelligence, Air University, Islamabad 44000, Pakistan

3. Biomedical Engineering Department, Air University, Islamabad 44000, Pakistan

4. Department of Software Engineering, Karachi Institute of Economics and Technology (KIET), Karachi 75260, Pakistan

5. Department of Electronic Engineering, Jeju National University, Jeju 63243, Republic of Korea

6. Department of Mechanical System Engineering, Jeju National University, Jeju 63243, Republic of Korea

Abstract

In this paper, we propose an improved clustering algorithm for wireless sensor networks (WSNs) that aims to increase network lifetime and efficiency. We introduce an enhanced fuzzy spider monkey optimization technique and a hidden Markov model-based clustering algorithm for selecting cluster heads. Our approach considers factors such as network cluster head energy, cluster head density, and cluster head position. We also enhance the energy-efficient routing strategy for connecting cluster heads to the base station. Additionally, we introduce a polling control method to improve network performance while maintaining energy efficiency during steady transmission periods. Simulation results demonstrate a 1.2% improvement in network performance using our proposed model.

Funder

National Research Foundation of Korea

Publisher

MDPI AG

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3