Statement Recognition of Access Control Policies in IoT Networks

Author:

Ma Li1,Yang Zexian1ORCID,Bu Zhaoxiong1ORCID,Lao Qidi1ORCID,Yang Wenyin1ORCID

Affiliation:

1. School of Electronic Information Engineering, Foshan University, Foshan 528000, China

Abstract

Access Control Policies (ACPs) are essential for ensuring secure and authorized access to resources in IoT networks. Recognizing these policies involves identifying relevant statements within project documents expressed in natural language. While current research focuses on improving recognition accuracy through algorithm enhancements, the challenge of limited labeled data from individual clients is often overlooked, which impedes the training of highly accurate models. To address this issue and harness the potential of IoT networks, this paper presents FL-Bert-BiLSTM, a novel model that combines federated learning and pre-trained word embedding techniques for access control policy recognition. By leveraging the capabilities of IoT networks, the proposed model enables real-time and distributed training on IoT devices, effectively mitigating the scarcity of labeled data and enhancing accessibility for IoT applications. Additionally, the model incorporates pre-trained word embeddings to leverage the semantic information embedded in textual data, resulting in improved accuracy for access control policy recognition. Experimental results substantiate that the proposed model not only enhances accuracy and generalization capability but also preserves data privacy, making it well-suited for secure and efficient access control in IoT networks.

Funder

Basic and Applied Basic Research Fund of Guangdong Province

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Enhancing Arabic Text Readability Assessment: A Combined BERT and BiLSTM Approach;2024 International Conference on Circuit, Systems and Communication (ICCSC);2024-06-28

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3