An H-GrabCut Image Segmentation Algorithm for Indoor Pedestrian Background Removal

Author:

Huang Xuchao12ORCID,Wang Shigang12ORCID,Gao Xueshan12,Luo Dingji3,Xu Weiye12,Pang Huiqing12,Zhou Ming4

Affiliation:

1. School of Automation, Guangxi University of Science and Technology, Liuzhou 545000, China

2. Key Laboratory of Intelligent Sensing and Control, Liuzhou 545000, China

3. Mechanical and Electrical College, Beijing Institute of Technology, Beijing 100190, China

4. Hangke Jinggong Co., Ltd., Beijing 102400, China

Abstract

In the context of predicting pedestrian trajectories for indoor mobile robots, it is crucial to accurately measure the distance between indoor pedestrians and robots. This study aims to address this requirement by extracting pedestrians as regions of interest and mitigating issues related to inaccurate depth camera distance measurements and illumination conditions. To tackle these challenges, we focus on an improved version of the H-GrabCut image segmentation algorithm, which involves four steps for segmenting indoor pedestrians. Firstly, we leverage the YOLO-V5 object recognition algorithm to construct detection nodes. Next, we propose an enhanced BIL-MSRCR algorithm to enhance the edge details of pedestrians. Finally, we optimize the clustering features of the GrabCut algorithm by incorporating two-dimensional entropy, UV component distance, and LBP texture feature values. The experimental results demonstrate that our algorithm achieves a segmentation accuracy of 97.13% in both the INRIA dataset and real-world tests, outperforming alternative methods in terms of sensitivity, missegmentation rate, and intersection-over-union metrics. These experiments confirm the feasibility and practicality of our approach. The aforementioned findings will be utilized in the preliminary processing of indoor mobile robot pedestrian trajectory prediction and enable path planning based on the predicted results.

Funder

National Key R&D Program “Active Health and Aging Science and Technology Response” Special Project

Guangxi Science and Technology Base and Talent Project

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3