Influence of Ti Vacancy Defects on the Dissolution of O-Adsorbed Ti(0001) Surface: A First-Principles Study

Author:

Wang Xiaoting1,Xie Dong1ORCID,Jing Fengjuan2,Ma Donglin3ORCID,Leng Yongxiang2ORCID

Affiliation:

1. Key Laboratory of Advanced Technologies of Materials, Ministry of Education of China, School of Physical Science and Technology, Southwest Jiaotong University, Chengdu 610031, China

2. Sichuan Province International Science and Technology Cooperation Base of Functional Materials, College of Medicine, Southwest Jiaotong University, Chengdu 610031, China

3. College of Physics and Engineering, Chengdu Normal University, Chengdu 611130, China

Abstract

To investigate the dissolution mechanism of Ti metal, ab initio calculations were conducted to observe the impact of Ti vacancy defects on the O-adsorbed Ti(0001) surface, focusing on the formation energies of Ti vacancy, geometric structures, and electronic structures. The surface structures subsequent to Ti dissolution were simulated by introducing a Ti cavity on both clean and O-adsorbed Ti(0001) surfaces. Our findings indicated that Ti vacancy formation energies and electrochemical dissolution potential on the O-adsorbed Ti(0001) surface surpassed those on the clean surface, and they increased with increasing O coverage. This suggested that O adsorption inhibited Ti dissolution and enhanced O atom interaction with the Ti surface as O coverage increased. Furthermore, at higher O coverage, Ti vacancies contributed to the strengthening of Ti-O bonds on the O-adsorbed Ti(0001) surface, indicating that Ti dissolution aided in stabilizing the Ti surface. The formation of Ti vacancies brought the atomic ratio of Ti to O on the Ti surface closer to that of TiO2, potentially explaining the increased stability of the structure with Ti vacancies.

Funder

Natural Science Foundation of Sichuan Province, China

Sichuan Science and Technology Program

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3