Investigation of Residual Stress Distribution and Fatigue of 7050-T7451 Alloy Hole Components with Laser Shock and Ultrasonic Extrusion

Author:

Jiang Yinfang12,Liu Xiancheng1,Wang Yangyang1,Cui Lingling2,Ji Guang2,Liu Wei1

Affiliation:

1. School of Mechanical Engineering, Jiangsu University, Zhenjiang 212000, China

2. School of Mechanical Engineering, Nantong Institute of Technology, Nantong 226000, China

Abstract

Small-hole structures, such as the millions of fastener holes found on aircraft, are typical stress-concentration structures prone to fatigue failure. To further improve the strengthening process of this small-hole structure, we make up for the limitations of laser shock processing (LSP) of small holes by combining it with the ultrasonic extrusion strengthening (UES) process to form a new strengthening method—laser shock and ultrasonic extrusion strengthening (LUE). The influence of the LUE process sequence and process parameters on residual stress distribution was studied through FEM, and the gain of fatigue life of specimens after LUE strengthening was also explored through tests. The results show that when using LUE technology, the friction force decreases with the increase in amplitude and decreases by 3.2% when the amplitude is maximum. The LUE process eliminates the thickness effect generated by LSP, which can achieve good stress distribution of small-hole components under smaller laser shock peak pressure, and reduces equipment power. LUE can significantly improve the fatigue life of small-hole components, and the maximum fatigue life gain can be up to 310.66%.

Funder

National Natural Science Foundation of China

the Project of Laser Processing and Metal Additive Manufacturing Technology and Application

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3