Affiliation:
1. School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200241, China
Abstract
Geometrically necessary dislocations (GNDs) play a pivotal role in polycrystalline plastic deformation, with their characteristics notably affected by strain rate and other factors, but the underlying mechanisms are not well understood yet. We investigate GND characteristics in pure copper polycrystals subjected to tensile deformation at varying strain rates (0.001 s−1, 800 s−1, 1500 s−1, 2500 s−1). EBSD analysis reveals a non-linear increase in global GND density with the strain rate rising, and a similar trend is also observed for local GND densities near the grain boundaries and that in the grain interiors. Furthermore, GND density decreases from the grain boundaries towards the grain interiors and this decline slows down at high strain rates. The origin of these trends is revealed by the connections between the GND characteristics and the behaviors of relevant microstructural components. The increase in grain boundary misorientations at higher strain rates promotes the increase of GND density near the grain boundaries. The denser distribution of dislocation cells, observed previously at high strain rates, is presumed to increase the GND density in the grain interiors and may also contribute to the slower decline in GND density near the grain boundaries. Additionally, grain refinement by higher strain rates also promotes the increase in total GND density. Further, the non-linear variation with respect to the strain rate, as well as the saturation at high strain rates, for grain boundary misorientations and grain sizes align well with the non-linear trend of GND density, consolidating the intimate connections between the characteristics of GNDs and the behaviors of these microstructure components.
Funder
Stability Support Project of Key Laboratory of Surface Physics and Chemistry
the Key Lab Fund Project
National Natural Science Foundation of China
the Science Challenge Project
the Science and Technology Commission of Shanghai