Activity Calculation and Vacuum Separation Theoretical Research concerning Ag–Cu, Ag–Sb and Cu–Sb Binary Alloys

Author:

Li Qingsong123,Tian Yang1234ORCID,Kong Lingxin1234,Yang Bin1234,Xu Baoqiang1234,Jiang Wenlong1234,Wang Lipeng123

Affiliation:

1. Key Laboratory for Nonferrous Vacuum Metallurgy of Yunnan Province, Kunming University of Science and Technology, Kunming 650093, China

2. National Engineering Research Center of Vacuum Metallurgy, Kunming University of Science and Technology, Kunming 650093, China

3. Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming 650093, China

4. State Key Laboratory of Complex Nonferrous Metal Resources Clean Utilization, Kunming University of Science and Technology, Kunming 650093, China

Abstract

The Ag–Cu–Sb system is a key component of lead anode slime and boasts an exceptionally high economic recovery value. In this work, six models, including the Molecular Interaction Volume Model (MIVM), Modified Molecular Interaction Volume Model (M-MIVM), Wilson equation, Miedema model, Regular Solution Model (RSE) and Sub-Regular Solution Model (SRSE), are used to calculate the predicted values of the activity and its deviations with experimental data for binary alloys in the Ag–Cu–Sb system for the first time. The result reveals that the overall means of the average relative deviation and average standard deviation of the M-MIVM are 0.01501 and 3.97278%, respectively, which are about two to six times smaller than those of the other five models, indicating the stability and reliability of the M-MIVM. In the meantime, the predicted data of the Cu–Ag binary alloy at 1423 K, Sb–Ag binary alloy at 1250 K and Sb–Cu binary alloy at 1375 K calculated from the M-MIVM are more reliable and pass the Herington test. Then, the separation coefficient–composition (β–x), temperature–composition (T–x–y) and pressure–composition (P–x–y) of the Cu–Ag, Sb–Ag and Sb–Cu binary alloys are plotted based on the M-MIVM and vacuum theories, showing that the Cu–Ag binary alloy is relatively difficult to separate and that high temperatures or high copper contents are detrimental to obtaining high-purity silver. Meanwhile, theoretical data of the T–x–y diagram are consistent with the available experimental data. These results can guide vacuum separation experiments and industrial production concerning Ag–Cu, Ag–Sb and Cu–Sb binary alloys.

Funder

National Key Research and Development Program of China

Major Science and Technology Project of Yunnan Province

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3