Evaluation of Shear-Punched Surface Layer Damage in Three Types of High-Strength TRIP-Aided Steel

Author:

Sugimoto Koh-ichi1ORCID,Shioiri Shoya1,Kobayashi Junya2

Affiliation:

1. Graduate School of Science and Technology, Shinshu University, Nagano 380-8553, Japan

2. Graduate School of Science and Engineering, Ibaraki University, Hitachi 316-8511, Japan

Abstract

The damage properties in the shear-punched surface layer, such as the strain-hardening increment, strain-induced martensite fraction, and initiated micro-crack/void characteristics at the shear and break sections, were experimentally evaluated to relate to the stretch-flangeability in three types of low-carbon high-strength TRIP-aided steel with different matrix structures. In addition, the surface layer damage properties were related to the mean normal stress developed on shear-punching and microstructural properties. The shear-punched surface damage of these steels was experimentally confirmed to be produced under the mean normal stress of negative to 0 MPa. TRIP-aided bainitic ferrite (TBF) steel had the smallest surface layer damage, featuring a significantly suppressed micro-crack/void initiation. This was due to the fine bainitic ferrite lath matrix structure, a low strength ratio of the second phase to the matrix structure, and the high mechanical stability of the retained austenite. On the other hand, the surface layer damage of TRIP-aided annealed martensite (TAM) steel was suppressed next to TBF steel and was smaller than that of TRIP-aided polygonal ferrite (TPF) steel. The surface layer damage was also characterized by a large plastic strain, a large amount of strain-induced martensite transformation, and a relatively suppressed micro-crack/void formation, which resulted from an annealed martensite matrix and a large quantity of retained austenite. The excellent stretch-flangeability of TBF steel might be caused by the suppressed micro-crack/void formation and high crack propagation/void connection resistance. The next high stretch-flangeability of TAM steel was associated with a small-sized micro-crack/void initiation and high crack growth/void connection resistance.

Publisher

MDPI AG

Reference48 articles.

1. Physical metallurgy of modern high strength steel sheets;Senuma;ISIJ Int.,2001

2. Driving force and logic of development of advanced high strength steels for automotive applications;Bouaziz;Steel Res. Int.,2013

3. Rana, R., and Singh, S.B. (2016). Automotive Steels—Design, Metallurgy, Processing and Applications, Woodhead Publishing.

4. The TRIP effect and its application in cold formable sheet steel;Bleck;Steel Res. Int.,2017

5. Krizan, D., Steineder, K., Kaar, S., and Hebesberger, T. (2018, January 22–23). Development of third generation advanced high strength steels for automotive applications. Proceedings of the 19th International Scientific Conference Transfer 2018, Trencin, Slovakia.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3