Corrosion Behavior of 30 ppi TAD3D/5A05Al Composite in Neutral Salt Spray Corrosion

Author:

Li Zishen12ORCID,Yang Hongliang13,Chen Yuxin12,Fu Gaofeng12,Jiang Lan12

Affiliation:

1. Key Laboratory for Ecological Metallurgy of Multimetallic Mineral, Ministry of Education, Northeastern University, Shenyang 110819, China

2. School of Metallurgy, Northeastern University, Shenyang 110819, China

3. State Power Investment Corporation Ningxia Energy and Aluminum Co., Ltd., Yinchuan 750002, China

Abstract

This study created ceramic preforms with a 3D network structure (TAD3D) by using treated aluminum dross (TAD) and kaolin slurry, with 30 ppi polyurethane foam as a template via the sacrificial template method. TAD3D/5A05Al composites were then produced via pressureless infiltration of 5A05Al aluminum alloy into TAD3D. The corrosion behavior and resistance of TAD3D/5A05Al in salt spray were assessed via neutral salt spray corrosion (NSS), scanning electron microscopy (SEM), potentiodynamic polarization (PDP), and electrochemical impedance spectroscopy (EIS) tests. The results showed that after 24 to 360 h of NSS corrosion, the corrosion of the 5A05 matrix was primarily pitting, with pits expanding and deepening over time, and showing a tendency to interconnect. The main corrosion products were MgAl2O4, Al(OH)3, and Al2O3. As corrosion progressed, these products increased and filled cracks, pits, and grooves at the composite interface on the material’s surface. Corrosion products transferred to the grooves at the composite interface and grew on the ceramic surface. Corrosion products on the ceramic framework and the Al matrix can form a continuous passivation film covering the composite surface. PDP and EIS results indicated that the composite’s corrosion resistance decreased by 240 h but increased after that time. After 240 h, the surface passivation film can weaken corrosion effects and enhance the composite’s resistance, although it remained weaker than that of the uncorroded samples. Additionally, grooves at the composite interface deepened over time, with loosely structured corrosion products inside, potentially leading to severe localized corrosion.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3