Study on the Optimization of the Preparation Process of ZM5 Magnesium Alloy Micro-Arc Oxidation Hard Ceramic Coatings and Coatings Properties

Author:

Jiang Bingchun12ORCID,Wen Zejun2,Wang Peiwen1,Huang Xinting1,Yang Xin1,Yuan Minghua1,Xi Jianjun1

Affiliation:

1. School of Mechanical and Electrical Engineering, Guangdong University of Science and Technology, Dongguan 523083, China

2. School of Mechanical and Electrical Engineering, Hunan University of Science and Technology, Xiangtan 411201, China

Abstract

Hard ceramic coatings were successfully prepared on the surface of ZM5 magnesium alloy by micro-arc oxidation (MAO) technology in silicate and aluminate electrolytes, respectively. The optimization of hard ceramic coatings prepared in these electrolyte systems was investigated through an orthogonal experimental design. The microstructure, elemental composition, phase composition, and tribological properties of the coatings were characterized by scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDS), X-ray diffraction (XRD), and tribological testing equipment. The results show that the growth of the hard ceramic coatings is significantly influenced by the different electrolyte systems. Coatings prepared from both systems have shown good wear resistance, with the aluminate electrolyte system being superior to the silicate system in performance. The optimized formulation for the silicate electrolyte solution has been determined to be sodium silicate at 8 g/L, sodium dihydrogen phosphate at 0.2 g/L, sodium tetraborate at 2 g/L, and potassium hydroxide at 1 g/L. The optimized formulation for the aluminate electrolyte solution consists of sodium aluminate at 5 g/L, sodium fluoride at 3 g/L, sodium citrate at 3 g/L, and sodium hydroxide at 0.5 g/L.

Funder

Guangdong Young Talent Innovation Programme

Dongguan Sci-Tech Commissioner Program

College Students Innovation and Entrepreneurship Training Program Project

Guangdong University of Science and Technology Innovative Research Team Project

Project-Based Team of Teaching and Learning Through Teaching and Creating

Publisher

MDPI AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3