Affiliation:
1. Department of Nanotechnology and Metallurgy, Karaganda Technical University, Nazarbayev Avenue No. 56, Karaganda 100027, Kazakhstan
Abstract
This paper deals with the possibility of smelting quasi-high-entropy alloys (QHEAs) with the partial use of ferroalloys in the charge instead of pure metals. The Cantor alloy (CoCrFeMnNi) was used as the base alloy and the comparison sample, into which niobium was introduced in the amount of 14 to 18% by weight. The structure, hardness, strength, and tribological properties of prototypes were studied. The results obtained showed, on the one hand, the possibility of using ferroalloys as charge components in the smelting of QHEAs and, on the other hand, the positive effect of niobium in the amount of 14–17% on the strength and wear resistance of the alloy. Increasing the niobium content above 18% leads to its uneven distribution in the structure, consequently decreasing the strength and wear resistance of the alloy. The structure of the studied alloys is represented by a solid solution of FCC, which includes all metals, and the niobium content varies widely. In addition, the structure is represented by the phases of implementation: niobium carbide NbC 0.76–1.0, manganese carbide Mn7C3, and a CrNi intermetallic compound with a cubic lattice.
Funder
Science Committee of the Ministry of Science and Higher Education of the Republic of Kazakhstan