Author:
Chasing Pongsakorn,Maitarad Phornphimon,Wu Hongmin,Zhang Dengsong,Shi Liyi,Promarak Vinich
Abstract
The quantitative structure-activity relationship (QSAR) of 18 Ti-phenoxy-imine (FI-Ti)-based catalysts was investigated to clarify the role of the structural properties of the catalysts in polyethylene polymerization activity. The electronic properties of the FI-Ti catalysts were analyzed based on density functional theory with the M06L/6-31G** and LANL2DZ basis functions. The analysis results of the QSAR equation with a genetic algorithm showed that the polyethylene catalytic activity mainly depended on the highest occupied molecular orbital energy level and the total charge of the substituent group on phenylimine ring. The QSAR models showed good predictive ability (R2) and R2 cross validation (R2cv) values of greater than 0.927. The design concept is “head-hat”, where the hats are the phenoxy-imine substituents, and the heads are the transition metals. Thus, for the newly designed series, the phenoxy-imine substituents still remained, while the Ti metal was replaced by Zr or Ni transition metals, entitled FI-Zr and FI-Ni, respectively. Consequently, their polyethylene polymerization activities were predicted based on the obtained QSAR of the FI-Ti models, and it is noteworthy that the FI-Ni metallocene catalysts tend to increase the polyethylene catalytic activity more than that of FI-Zr complexes. Therefore, the new designs of the FI-Ni series are proposed as candidate catalysts for polyethylene polymerization, with their predicted activities in the range of 35,000–48,000 kg(PE)/mol(Cat.)·MPa·h. This combined density functional theory and QSAR analysis is useful and straightforward for molecular design or catalyst screening, especially in industrial research.
Funder
Thailand Research Fund
Shanghai Municipal Science and Technology Commission
Subject
Physical and Theoretical Chemistry,Catalysis
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献