Photocatalytic Inactivation of Bacteriophage f2 with Ag3PO4/g-C3N4 Composite under Visible Light Irradiation: Performance and Mechanism

Author:

Cheng RongORCID,Shen Liang-jie,Yu Jin-hui,Xiang Shao-yu,Zheng Xiang

Abstract

Water-borne virus pollution has caused great harm and attracted widespread attention in many countries. Visible-light-driven photocatalysis is considered as a promising process for disinfection. In this study, Ag3PO4/g-C3N4 (AgCN) composites were synthesized by hydrothermal method. The photocatalytic disinfection was investigated using bacteriophage f2 as the model virus. Moreover, the effects of pH and humic acid on photocatalytic disinfection were studied. Meanwhile, the mechanism of enhanced disinfection by Ag3PO4/g-C3N4 was systematically investigated by radical scavenger experiments. The results show that Ag3PO4 particles were uniformly distributed on g-C3N4 sheets. By means of photoluminescence spectrometer analysis, it is confirmed that a lower carrier recombination rate for Ag3PO4/g-C3N4 was achieved compared with Ag3PO3 and g-C3N4. Meanwhile, complete inactivation of f2 with concentration of 3 × 106 PFU/mL was reached within 80 min in the presence of Ag3PO4/g-C3N4 composite. The pH had little effect on removal efficiency overall, while the existence of humic acid resulted in a significant negative effect on the inactivation of f2 due to the optical shielding and absorption of humic acid. Recycling tests of Ag3PO4/g-C3N4 confirmed that Ag3PO4/g-C3N4 presented superior stability. The results from radical scavenger experiments indicated that holes (h+) and hydroxyl radicals (·OH) played important roles in photocatalytic disinfection process.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Physical and Theoretical Chemistry,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3