Abstract
Understanding how different two organisms are is one question addressed by the comparative genomics field. A well-accepted way to estimate the evolutionary distance between genomes of two organisms is finding the rearrangement distance, which is the smallest number of rearrangements needed to transform one genome into another. By representing genomes as permutations, one of them can be represented as the identity permutation, and, so, we reduce the problem of transforming one permutation into another to the problem of sorting a permutation using the minimum number of rearrangements. This work investigates the problems of sorting permutations using reversals and/or transpositions, with some additional restrictions of biological relevance. Given a value λ, the problem now is how to sort a λ-permutation, which is a permutation whose elements are less than λ positions away from their correct places (regarding the identity), by applying the minimum number of rearrangements. Each λ-rearrangement must have size, at most, λ, and, when applied to a λ-permutation, the result should also be a λ-permutation. We present algorithms with approximation factors of O(λ2), O(λ), and O(1) for the problems of Sorting λ-Permutations by λ-Reversals, by λ-Transpositions, and by both operations.
Funder
Fundação de Amparo à Pesquisa do Estado de São Paulo
Conselho Nacional de Desenvolvimento Científico e Tecnológico
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior
Subject
Computational Mathematics,Computational Theory and Mathematics,Numerical Analysis,Theoretical Computer Science
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献