Sustainable Management of Soil-Borne Bacterium Ralstonia solanacearum In Vitro and In Vivo through Fungal Metabolites of Different Trichoderma spp.

Author:

Guo Yancui,Fan Zhenyu,Yi Xiong,Zhang Yuhong,Khan Raja Asad Ali,Zhou Zhiqiang

Abstract

The efficacy of traditional control measures for the management of plant pathogens is decreasing, and the resistance of these pathogens to pesticides is increasing, which poses a serious threat to global food security. The exploration of novel and efficient management measures to combat plant disease is an urgent need at this time. In this study, fungal metabolites from three Trichoderma spp. (T. harzianum, T. virens and T. koningii) were prepared on three different growth media (STP, MOF and supermalt (SuM)). The fungal metabolites were tested in vitro and in vivo from March–April 2020 under greenhouse conditions in a pot experiment utilizing completely randomized design to test their management of the bacterial wilt disease caused by R. solanacearum in tomato plants. The effect of the fungal metabolites on bacterial cell morphology was also investigated through scanning electron microscopy (SEM) analysis. In vitro investigation showed that the fungal metabolites of T. harzianum obtained on the STP medium were the most effective in inhibiting in vitro bacterial growth and produced a 17.6 mm growth inhibition zone. SEM analysis confirms the rupture of the cell walls and cell membranes of the bacterium, along with the leakage of its cell contents. Generally, fungal metabolites obtained on an STP medium showed higher activity than those obtained on the other two media, and these metabolites were then evaluated in vivo according to three application times (0 days before transplantation (DBT), 4 DBT and 8 DBT) in a greenhouse trial to examine their ability to manage R. solanacearum in tomato plants. Consistent with in vitro results, the results from the greenhouse studies showed a level of higher anti-bacterial activity of T. harzianum metabolites than they did for the metabolites of other fungi, while among the three application times, the longest time (8 DBT) was more effective in controlling bacterial wilt disease in tomato plants. Metabolites of T. harzianum applied at 8 DBT caused the maximum decrease in soil bacterial population (1.526 log cfu/g), resulting in the lowest level of disease severity (area under disease progressive curve (AUDPC) value: 400), and maximum plant freshness (with a resulting biomass of 36.7 g, a root length of 18.3 cm and a plant height of 33.0 cm). It can be concluded that T. harzianum metabolites obtained on an STP medium, when applied after 8 DBT, can suppress soil bacterial population and enhance plant growth, and thus can be used as a safe, environmentally-conscious and consumer-friendly approach to managing bacterial wilt disease in tomato plants and possibly other crops.

Funder

School-enterprise cooperation project of basic scientific research funds of provincial undergrad-uate universities in Heilongjiang Province of China.

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3