Fusion Domain-Adaptation CNN Driven by Images and Vibration Signals for Fault Diagnosis of Gearbox Cross-Working Conditions

Author:

Mao Gang,Zhang Zhongzheng,Qiao Bin,Li YongboORCID

Abstract

The vibration signal of gearboxes contains abundant fault information, which can be used for condition monitoring. However, vibration signal is ineffective for some non-structural failures. In order to resolve this dilemma, infrared thermal images are introduced to combine with vibration signals via fusion domain-adaptation convolutional neural network (FDACNN), which can diagnose both structural and non-structural failures under various working conditions. First, the measured raw signals are converted into frequency and squared envelope spectrum to characterize the health states of the gearbox. Second, the sequences of the frequency and squared envelope spectrum are arranged into two-dimensional format, which are combined with infrared thermal images to form fusion data. Finally, the adversarial network is introduced to realize the state recognition of structural and non-structural faults in the unlabeled target domain. An experiment of gearbox test rigs was used for effectiveness validation by measuring both vibration and infrared thermal images. The results suggest that the proposed FDACNN method performs best in cross-domain fault diagnosis of gearboxes via multi-source heterogeneous data compared with the other four methods.

Funder

National Natural Science Foundation of China

Key Laboratory of Equipment Research Foundation

Publisher

MDPI AG

Subject

General Physics and Astronomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3