On the Depth of Decision Trees with Hypotheses

Author:

Moshkov MikhailORCID

Abstract

In this paper, based on the results of rough set theory, test theory, and exact learning, we investigate decision trees over infinite sets of binary attributes represented as infinite binary information systems. We define the notion of a problem over an information system and study three functions of the Shannon type, which characterize the dependence in the worst case of the minimum depth of a decision tree solving a problem on the number of attributes in the problem description. The considered three functions correspond to (i) decision trees using attributes, (ii) decision trees using hypotheses (an analog of equivalence queries from exact learning), and (iii) decision trees using both attributes and hypotheses. The first function has two possible types of behavior: logarithmic and linear (this result follows from more general results published by the author earlier). The second and the third functions have three possible types of behavior: constant, logarithmic, and linear (these results were published by the author earlier without proofs that are given in the present paper). Based on the obtained results, we divided the set of all infinite binary information systems into four complexity classes. In each class, the type of behavior for each of the considered three functions does not change.

Funder

King Abdullah University of Science and Technology

Publisher

MDPI AG

Subject

General Physics and Astronomy

Reference21 articles.

1. Queries and concept learning

2. Rough sets

3. Rough Sets—Theoretical Aspects of Reasoning about Data;Pawlak,1991

4. Rudiments of rough sets

5. Logical methods of control of work of electric schemes;Chegis;Trudy Mat. Inst. Steklov,1958

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3