Affordable 3D Orientation Visualization Solution for Working Class Remotely Operated Vehicles (ROV)

Author:

Kasno Mohammad Afif1ORCID,Yahaya Izzat Nadzmi2,Jung Jin-Woo1

Affiliation:

1. Department of Computer Science and Engineering, Dongguk University, Seoul 04620, Republic of Korea

2. Faculty of Electronic Technology and Engineering, Universiti Teknikal Malaysia Melaka, Malacca 76100, Malaysia

Abstract

ROV operators often encounter challenges with orientation awareness while operating underwater, primarily due to relying solely on 2D camera feeds to manually control the ROV robot arm. This limitation in underwater visibility and orientation awareness, as observed among Malaysian ROV operators, can compromise the accuracy of arm placement, and pose a risk of tool damage if not handle with care. To address this, a 3D orientation monitoring system for ROVs has been developed, leveraging measurement sensors with nine degrees of freedom (DOF). These sensors capture crucial parameters such as roll, pitch, yaw, and heading, providing real-time data on the ROV’s position along the X, Y, and Z axes to ensure precise orientation. These data are then utilized to generate and process 3D imaging and develop a corresponding 3D model of the operational ROV underwater, accurately reflecting its orientation in a visual representation by using an open-source platform. Due to constraints set by an agreement with the working class ROV operators, only short-term tests (up to 1 min) could be performed at the dockyard. A video demonstration of a working class ROV replica moving and reflecting in a 3D simulation in real-time was also presented. Despite these limitations, our findings demonstrate the feasibility and potential of a cost-effective 3D orientation visualization system for working class ROVs. With mean absolute error (MAE) error less than 2%, the results align with the performance expectations of the actual working ROV.

Funder

Ministry of Trade, Industry and Energy

National Research Foundation of Korea

MSIT (Ministry of Science and ICT), Korea

Artificial Intelligence Convergence Innovation Human Resources Development

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3