Wearables Meet IoT: Synergistic Personal Area Networks (SPANs)

Author:

Jovanov EmilORCID

Abstract

Wearable monitoring and mobile health (mHealth) revolutionized healthcare diagnostics and delivery, while the exponential increase of deployed “things” in the Internet of things (IoT) transforms our homes and industries. “Things” with embedded activity and vital sign sensors that we refer to as “smart stuff” can interact with wearable and ambient sensors. A dynamic, ad-hoc personal area network can span multiple domains and facilitate processing in synergistic personal area networks—SPANs. The synergy of information from multiple sensors can provide: (a) New information that cannot be generated from existing data alone, (b) user identification, (c) more robust assessment of physiological signals, and (d) automatic annotation of events/records. In this paper, we present possible new applications of SPANs and results of feasibility studies. Preliminary tests indicate that users interact with smart stuff—in our case, a smart water bottle—dozens of times a day and sufficiently long to collect vital signs of the users. Synergistic processing of sensors from the smartwatch and objects of everyday use may provide user identification and assessment of new parameters that individual sensors could not generate, such as pulse wave velocity (PWV) and blood pressure. As a result, SPANs facilitate seamless monitoring and annotation of vital signs dozens of times per day, every day, every time the smart object is used, without additional setup of sensors and initiation of measurements. SPANs creates a dynamic “opportunistic bubble” for ad-hoc integration with other sensors of interest around the user, wherever they go. Continuous long-term monitoring of user’s activity and vital signs can provide better diagnostic procedures and personalized feedback to motivate a proactive approach to health and wellbeing.

Funder

University of Alabama in Huntsville

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 29 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3