Onboard Real-Time Dense Reconstruction in Large Terrain Scene Using Embedded UAV Platform

Author:

Lai ZhengchaoORCID,Liu Fei,Guo Shangwei,Meng Xiantong,Han Shaokun,Li Wenhao

Abstract

Using unmanned aerial vehicles (UAVs) for remote sensing has the advantages of high flexibility, convenient operation, low cost, and wide application range. It fills the need for rapid acquisition of high-resolution aerial images in modern photogrammetry applications. Due to the insufficient parallaxes and the computation-intensive process, dense real-time reconstruction for large terrain scenes is a considerable challenge. To address these problems, we proposed a novel SLAM-based MVS (Multi-View-Stereo) approach, which can incrementally generate a dense 3D (three-dimensional) model of the terrain by using the continuous image stream during the flight. The pipeline of the proposed methodology starts with pose estimation based on SLAM algorithm. The tracked frames were then selected by a novel scene-adaptive keyframe selection method to construct a sliding window frame-set. This was followed by depth estimation using a flexible search domain approach, which can improve accuracy without increasing the iterate time or memory consumption. The whole system proposed in this study was implemented on the embedded GPU based on an UAV platform. We proposed a highly parallel and memory-efficient CUDA-based depth computing architecture, enabling the system to achieve good real-time performance. The evaluation experiments were carried out in both simulation and real-world environments. A virtual large terrain scene was built using the Gazebo simulator. The simulated UAV equipped with an RGB-D camera was used to obtain synthetic evaluation datasets, which were divided by flight altitudes (800-, 1000-, 1200 m) and terrain height difference (100-, 200-, 300 m). In addition, the system has been extensively tested on various types of real scenes. Comparison with commercial 3D reconstruction software is carried out to evaluate the precision in real-world data. According to the results on the synthetic datasets, over 93.462% of the estimation with absolute error distance of less then 0.9%. In the real-world dataset captured at 800 m flight height, more than 81.27% of our estimated point cloud are less then 5 m difference with the results of Photoscan. All evaluation experiments show that the proposed approach outperforms the state-of-the-art ones in terms of accuracy and efficiency.

Funder

International Science and Technology Cooperation Programme

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. AutoFusion: Autonomous Visual Geolocation and Online Dense Reconstruction for UAV Cluster;2024 IEEE International Conference on Robotics and Automation (ICRA);2024-05-13

2. Methodology for Visualization of Remote Sensing Information Based on Low-Cost Devices;2024 2nd International Conference on Intelligent Data Communication Technologies and Internet of Things (IDCIoT);2024-01-04

3. 3D Reconstruction Method Based on Autonomous Attitude Estimation for UAVs;Lecture Notes in Electrical Engineering;2024

4. Scene-Matching Localization for Autonomous Evtol Based on Bag-Of-Visual-Words;IGARSS 2023 - 2023 IEEE International Geoscience and Remote Sensing Symposium;2023-07-16

5. Non-local affinity adaptive acceleration propagation network for generating dense depth maps from LiDAR;Optics Express;2023-06-14

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3