A Satellite View of an Intense Snowfall in Madrid (Spain): The Storm ‘Filomena’ in January 2021

Author:

Tapiador Francisco J.ORCID,Villalba-Pradas AnahíORCID,Navarro Andrés,Martín RaúlORCID,Merino AndrésORCID,García-Ortega Eduardo,Sánchez José LuisORCID,Kim KwonilORCID,Lee Gyuwon

Abstract

Evaluating satellite ability in capturing sudden natural disasters such as heavy snowstorms is a topic of societal interest. This paper presents a rapid qualitative analysis of an intense snowfall in Madrid using data from the Global Precipitation Measurement (GPM) mission, specifically the GPM IMERG (Integrated Multi-satellitE Retrievals for GPM) Late Precipitation L3 Half Hourly 0.1° × 0.1° V06 estimates of precipitation (IMERG-Late), and Sentinel-2 imagery. The main research question addressed is the consistency of ground observations, model outputs and satellite data, a topic of major interest for an appropriate and timely societal response to severe weather episodes. Indeed, the choice of the ‘Late’ product over the IMERG ‘Final’ or other GPM datasets was motivated by the availability of data for near real-time response to the storm. Additionally, the 30-min temporal resolution of the product would in principle allow for a detailed analysis of the dynamic processes involved in the snowstorm. Using several complementary data sources, it is shown that optical remote sensing sensors (Sentinel) add value to existing ground data and that is invaluable for rapid response to severe meteorological events such as Filomena. Regarding the GPM precipitation radar, the sampling of the GPM-core satellite was insufficient to provide the IMERG algorithm with enough quality data to correctly represent the actual sequence of precipitation. Without corrections, the total precipitation differs from observations by a factor of two. The difficulties of retrieving precipitation with radiometers over snow-covered surfaces was a major factor for the mismatch. Thus, the calibrated precipitation product did not fully capture the historic storm, and neither did the IR-based element of the IMERG-Late product, which is a neural network merging of microwave and infrared data. It follows that increased temporal resolution of spaceborne microwave sensors and improved retrieval of precipitation from radiometers are critical in order to provide a complete account of these sorts of extreme, significant, short-duration cases. Otherwise, the high-quality, radar and radiometer data feeding the high temporal resolution algorithms simply slip through the grasp of the ascending and descending orbits, leaving little quality data to be interpolated into successive overpasses.

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3