Integrating Phenological and Geographical Information with Artificial Intelligence Algorithm to Map Rubber Plantations in Xishuangbanna

Author:

Yang JianboORCID,Xu JianchuORCID,Zhai De-LiORCID

Abstract

Most natural rubber trees (Hevea brasiliensis) are grown on plantations, making rubber an important industrial crop. Rubber plantations are also an important source of household income for over 20 million people. The accurate mapping of rubber plantations is important for both local governments and the global market. Remote sensing has been a widely used approach for mapping rubber plantations, typically using optical remote sensing data obtained at the regional scale. Improving the efficiency and accuracy of rubber plantation maps has become a research hotspot in rubber-related literature. To improve the classification efficiency, researchers have combined the phenology, geography, and texture of rubber trees with spectral information. Among these, there are three main classifiers: maximum likelihood, QUEST decision tree, and random forest methods. However, until now, no comparative studies have been conducted for the above three classifiers. Therefore, in this study, we evaluated the mapping accuracy based on these three classifiers, using four kinds of data input: Landsat spectral information, phenology–Landsat spectral information, topography–Landsat spectral information, and phenology–topography–Landsat spectral information. We found that the random forest method had the highest mapping accuracy when compared with the maximum likelihood and QUEST decision tree methods. We also found that adding either phenology or topography could improve the mapping accuracy for rubber plantations. When either phenology or topography were added as parameters within the random forest method, the kappa coefficient increased by 5.5% and 6.2%, respectively, compared to the kappa coefficient for the baseline Landsat spectral band data input. The highest accuracy was obtained from the addition of both phenology–topography–Landsat spectral bands to the random forest method, achieving a kappa coefficient of 97%. We therefore mapped rubber plantations in Xishuangbanna using the random forest method, with the addition of phenology and topography information from 1990–2020. Our results demonstrated the usefulness of integrating phenology and topography for mapping rubber plantations. The machine learning approach showed great potential for accurate regional mapping, particularly by incorporating plant habitat and ecological information. We found that during 1990–2020, the total area of rubber plantations had expanded to over three times their former area, while natural forests had lost 17.2% of their former area.

Funder

Kunming Institute of Botany, Chinese Academy of Sciences

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3