LMIs-Based LPV Control of Quadrotor with Time-Varying Payload

Author:

Saeed Azmat1ORCID,Bhatti Aamer I.1,Malik Fahad M.2

Affiliation:

1. Department of Electrical Engineering, Capital University of Science and Technology, Islamabad 45750, Pakistan

2. Department of Electrical Engineering, College of Electrical and Mechanical Engineering, National University of Sciences and Technology, Islamabad 44000, Pakistan

Abstract

Applications of a quadrotor with payload, particularly for chemical spraying, have increased in recent times. The variation in payload mass over time causes a change in the moments of inertia (MOI). Moreover, large tilt angles are required for fast reference tracking and external disturbance rejection. These variations in plant parameters (i.e., mass and inertia) and large tilt angles can degrade the control scheme’s performance and stability. This article proposes a linear matrix inequalities (LMIs)-based linear parameter varying (LPV) control scheme for a quadrotor subject to time-varying mass, time-varying inertia, mass flow rate, and large tilt angles. The control strategy is designed by solving LMIs derived from quadratic H∞ performance and D-stability. The robust stability and quadratic H∞ performance are assessed by LMIs. The efficacy of the proposed methodology is established using numerical simulations, and its performance is compared to the linear time-invariant (LTI) H∞ design with pole placement constraints. The results obtained show that the LPV control scheme gives better tracking performance in the presence of time-varying parameters, noise, and external disturbances without actuator saturation. In comparison to the LTI design technique, the proposed LPV scheme improves the rise time (tr), settling time (ts), and mean squared error (MSE) by up to 14%, 15%, and 30%, respectively. Moreover, smooth transitions are observed in the tilt angles and control signals with the LPV scheme, contrary to the LTI controller, which exhibits significant oscillations.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3